The Effect of Dielectric Constants on Noble Metal/Semiconductor SERS Enhancement: FDTD Simulation and Experiment Validation of Ag/Ge and Ag/Si Substrates

نویسندگان

  • Tao Wang
  • Zhaoshun Zhang
  • Fan Liao
  • Qian Cai
  • Yanqing Li
  • Shuit-Tong Lee
  • Mingwang Shao
چکیده

The finite-difference time-domain (FDTD) method was employed to simulate the electric field distribution for noble metal (Au or Ag)/semiconductor (Ge or Si) substrates. The simulation showed that noble metal/Ge had stronger SERS enhancement than noble metal/Si, which was mainly attributed to the different dielectric constants of semiconductors. In order to verify the simulation, Ag nanoparticles with the diameter of ca. 40 nm were grown on Ge or Si wafer (Ag/Ge or Ag/Si) and employed as surface-enhanced Raman scattering substrates to detect analytes in solution. The experiment demonstrated that both the two substrates exhibited excellent performance in the low concentration detection of Rhodamine 6G. Besides, the enhancement factor (1.3 × 10(9)) and relative standard deviation values (less than 11%) of Ag/Ge substrate were both better than those of Ag/Si (2.9 × 10(7) and less than 15%, respectively), which was consistent with the FDTD simulation. Moreover, Ag nanoparticles were grown in-situ on Ge substrate, which kept the nanoparticles from aggregation in the detection. To data, Ag/Ge substrates showed the best performance for their sensitivity and uniformity among the noble metal/semiconductor ones.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasmonic color analysis of Ag-coated black-Si SERS substrate.

Red-Green-Blue (RGB) dark-field imaging can direct the choice of laser excitation for Raman enhancements on nanostructured plasmonic surfaces. Here we demonstrate that black silicon (b-Si) is a structured surface that has been shown to effectively absorb broad wavelengths of light, but also enables surface enhanced Raman scattering (SERS) when coated with silver (Ag). Coating b-Si with increasi...

متن کامل

Self-assembly of various silver nanocrystals on PmPD/PAN nanofibers as a high-performance 3D SERS substrate.

We report a facile method to synthesise flexible 3D surface-enhanced Raman scattering (SERS) substrates, using poly-m-phenylenediamine/polyacrylonitrile (PmPD/PAN) nanofiber mats as templates to self-assemble citrate-stabilized Ag nanocrystals (AgNCs), such as Ag nanoparticles (AgNPs), Ag nanotriangles (AgNTs) or Ag nanodisks (AgNDs). The SERS performances of AgNC@2D and AgNC@3D substrates were...

متن کامل

Self-assembled metal colloid films: two approaches for preparing new SERS active substrates.

In this paper, we propose two new approaches for preparing active substrates for surface-enhanced Raman scattering (SERS). In the first approach (method 1), one transfers AgI nanoparticles capped by negatively charged mercaptoacetic acid from a AgI colloid solution onto a quartz slide and then deoxidizes AgI to Ag nanoparticles on the substrate. The second approach (method 2) deoxidizes AgI to ...

متن کامل

One-step Solution Processing of Ag, Au and Pd@MXene Hybrids for SERS

We report on one-step hybridization of silver, gold and palladium nanoparticles from solution onto exfoliated two-dimensional (2D) Ti3C2 titanium carbide (MXene) nanosheets. The produced hybrid materials can be used as substrates for surface-enhanced Raman spectroscopy (SERS). An approximate analytical approach is also developed for the calculation of the surface plasmon resonance (SPR) frequen...

متن کامل

Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles

The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014